在安吉罩式炉中进行淬火时的冷却速度是指需要确保饱和固溶体固定而不会分解,防止强化相沉淀以及降低淬火时效的机械性能。因此,安吉罩式炉淬火时的冷却速度越快越好。然而,冷却速率越大,淬火产品的残余应力和残余变形越大。因此,应根据不同的合金以及不同形状和尺寸的产品来确定冷却速度。 普通合金的淬火对冷却速率高度敏感,因此选择的冷却速率应较大。实际上,就此而言,您可以清楚地看到台车炉比网带炉要复杂得多,这与它们的使用范围有关。对于具有不同形状和尺寸的产品,应使用不同的冷却速率。通常,这主要是通过调节淬火介质的温度来实现的。对于简单的形状,中小型棒材,可以使用室温淬火;对于形状复杂且壁厚差较大的型材,可以使用中温淬火。 对于特别容易变形的产品,甚至可以将水温升高到更高的温度进行淬火。随着水温的升高,淬火产物的机械性能和耐腐蚀性降低。
根据行业标准的要求,安吉罩式炉主要是空气中的辐射加热。安吉罩式炉不带强制循环风机的电炉的炉温均匀度的国家标准为炉温正负10度。具体来说,取决于您的熔炉。有效加热尺寸,淬火炉是台车炉还是竖炉? 您能说得更具体些吗?建议在特殊的回火炉中回火,具体取决于技术要求。如果硬度较低并且硬度差较大,则可以在淬火炉中进行。由于淬火,该淬火炉通常是空气炉。 该炉在没有风扇的情况下在高温下使用,温度不会太均匀,尤其是在低温下。 这与金属的导热方法有关。 我在这里不多说。如果您的淬火炉是盐炉,通常不会。如果对工件的硬度要求较高,则对其进行回火。如果更严格,则不能在淬火炉中回火,而是在回火炉中回火,因为回火炉通常带有风扇,并且大气循环良好。回火后,工件的硬度均匀。
安吉罩式炉(退火炉)的常识:在安吉罩式炉中处理钛合金时,不应将氮气用作冷却气体,因为钛和氮气会在高温下反应形成金黄色的氮化钛。真空炉的所有可移动连接部件均通过O形圈密封,并通过水进行冷却。 工件在真空下淬火。应使用真空淬火油。该油具有较低的饱和蒸气压。 真空炉的维护应处于真空或充氮状态,以免在不使用时吸入和吸收水分。国产真空炉的压力上升率应不大于1.33Pa / h,国外一些企业的标准为0.67Pa / h。真空加热主要基于辐射,并且工件应在炉内隔开。在加热过程中,炉内的工件和材料将放气以降低真空度。真空退火,真空退火,真空固溶处理和真空老化的加热温度通常与常规处理的加热温度相同。真空退火炉应具有快速冷却装置。冷却水压力应大于0.2Mpa,流量应可调。冷却气体:钢通常使用99.995%的氮气,高温合金通常使用99.999%的氮气或氩气,钛合金使用99.995%的氩气。温升:放入工件后,通常在加热之前将其预先泵送至6.67Pa。
新购置安吉罩式炉或重修的电极盐浴炉应烘炉,可用电阻丝盘炉烘烤,分段升温和保温,以防混凝土浴槽开裂。工作时应开动排风装置,停电时安吉罩式炉应加盖。炉壳与变压器接地。铜排与电极柄应接触良好。检查浴槽,电极,电极柄,变压器及水冷却装置等部位有无漏电短路。清理炉子各部位的粘盐,氧化皮等污物。盐液面应保持一定高度,以保证工件能均匀,快速加热,应及时脱氧,捞渣,加足够新盐。因电极盐炉启动困难而哲时停炉时,可在炉口加盖并在低档供电下保温;长期停电应捞出部分盐液,并安放启动装置。
在安吉罩式炉冷却速度是一个能影响淬火质量并决议剩余应力的重要要素,也是一个能对淬火裂纹赋于重要乃至决议性影响的要素。为了到达淬火的目的,安吉罩式炉通常必需加速零件在高温段内的冷却速度,并使之超越钢的临界淬火冷却速度才干得到马氏体组织。就剩余应力而论,这样做由于能增加抵消组织应力作用的热应力值,故能减少工件外表上的拉应力而到达抑止纵裂的目的。其效果将随高温冷却速度的加快而增大。而且,在能淬透的状况下,截面尺寸越大的工件,固然实践冷却速度更缓,开裂的风险性却反而愈大。
安吉罩式炉基于钢的相变临界点。加热时,安吉罩式炉必须形成微细且均匀的奥氏体晶粒,淬火后需要获得微细的马氏体组织。碳钢的淬火加热温度范围。淬火炉加热温度范围图中所示的淬火温度选择原理也适用于大多数合金钢,尤其是低合金钢。次共析钢的加热温度比Ac3温度高30至50°C。从图中可以看出,钢在高温下的状态处于单相奥氏体(A)区,因此称为全淬火。如果亚共析钢的加热温度高于Ac1且低于Ac3温度,则第一共析铁素体的一部分在高温下不会转变成奥氏体,即,不是所有(或亚临界)淬火。高共析钢的淬火温度比Ac1温度高30-50°C,该温度范围在奥氏体和渗碳体(A C)两相区域。因此,超共析钢的常规淬火仍未全部淬火。硬化后,获得分布在马氏体基体上的渗碳体组织。这种状态的结构具有高硬度和高耐磨性。 对于超共析钢,如果加热温度过高,则第一个共析渗碳体会溶解过多,甚至全部溶解,奥氏体晶粒会长大,奥氏体碳含量也会增加。淬火后,粗的马氏体组织增加了钢淬火微观区域的应力,增加了微裂纹的数量,并增加了零件的变形和开裂趋势。由于奥氏体的碳浓度高,因此马氏体点降低,残留奥氏体量减少。增加,降低工件的硬度和耐磨性。